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ABSTRACT 
 

The most general type problem considered in least squares is formulated and solved with the aid 

of matrix algebra for the case in which the observations have the general multivariate normal 

distribution. The criterion for adjustment is the principle of maximum likelihood. Such related 

topics as the inversion of the normal equations, variance-covariance propagation, direct 

adjustment of functions of observations, statistical tests of significance, and the geometrical 

interpretation of the adjustment are considered. It is pointed out that the results of the 

conventional method of least squares are special cases of the present theory. 

 

  



 

1. INTRODUCTION 

 

 

In recent years several writers have employed matrix analysis to derive special results for the method 

of least squares.  Dwyer (1944) [1] employed matrix algebra in considering the least squares 

determination of linear regression coefficients.  Along the same line, Aitken (1935) [2] and Cohen 

(1953) [3] derived matrix results for the adjustment of correlated observations using the minimum 

variance criterion.  Perhaps the most extensive work to date is that of the German geodesist Gotthardt 

(1952) [4] whose matrix presentation covers the basic material treated in such texts on classical least 

squares as Merriman [5], Weld [6], and Leland [7].  A fairly broad matrix presentation can also be found 

in a textbook by Arley and Buch (1950) [8]. 

None of the above writers considered the subject of a matrix treatment of least squares with full 

generality. What we shall presently regard as the general problem of least squares was first formulated 

and solved by the geodesist Helmert (1872) [9] [10].  However, Helmert's results apparently remained 

largely unknown to English speaking mathematicians, and the problem was again formulated and 

solved by Deming [11], [12], [13], [14] in 1931.  Like Helmert, Deming recognized that all problems in 

least squares could be considered from a single point of view, namely, as problems of constrained 

minima.  Thus, all least squares adjustments consist basically of the minimization of a quadratic form 

the variables of which are subject to certain equations of constraint, the so called condition equations.  

Deming's unique contribution was one of interpretation and application.  For instance, by fully utilizing 

this concept he gave a satisfactory solution to the hitherto unsolved general problem of least squares 

curve fitting with more than one variable in error. 

In this paper we shall employ matrix analysis to extend the Helmert-Deming general problem of least 

squares to the case for which the observations have the general multivariate normal density.  However, 

if desired, the results may also be considered from the minimum variance point of view.  Thus, the 

conventional method of least squares and the principal results of the above references emerge as 

special cases of the present development. 

  



 

2. STATEMENT OF THE GENERAL PROBLEM 
 

Let  0
1 2, , ,o o

nx x x⋅ ⋅ ⋅   be the elements of a set of observations.  Assume temporarily that all the 

observations are ideal, i.e., error free.  Then the set is overdetermined if any subset is sufficient to 

determine the whole set.  The degrees of freedom r  of the set is equal to the number of observations 

in excess of the minimum number on  required to determine the whole set ( or n n= − ).  The number 

of independent condition equations existing between the observations is equal to the degrees of 

freedom of the set.  In many cases, curve fitting for instance, it is convenient to introduce p  unknown 

parameters in setting up the relations between the observations. The total number of independent 

condition equations existing between the observations and parameters is then m r p= + . Let this set 

of m  condition equations be denoted by 

(2.1) 1 2 1 2 1, 2, ,( , , , , , , , ) 0       i n p i mf x x x α α α = ⋅ ⋅ ⋅⋅ ⋅ ⋅ ⋅ ⋅ ⋅ =     . 

where 1 2, , , pα α α⋅ ⋅ ⋅  are the unknown parameters and the ix  are adjusted values of the original 

observations: that is 

(2.2) observed value + residual o
i i ix x ν= + = , 

Since the condition equations must be independent, it is necessary that the relations 

,  m p n m p> > −  (or more compactly n p m p+ > > ) hold.  If the p  parameters are not mutually 

independent, the relations existing between them must be included among the condition equations.  

Hence s p<  of the m  condition equations may involve parameters only.  Introducing known 

approximation values o
iα  for the parameters with 

(2.3) o
i i iα α δ= +   , 

the condition equations can be written 

(2.4) 
0 0 0

1 1 2 2 1 1 2 2

1, 2, ,

( , , , , , , , ) 0   
    

o o o
i n n p p

i m

f x x xν ν ν α δ α δ α δ

= ⋅ ⋅ ⋅

+ + ⋅ ⋅ ⋅ + + + ⋅⋅ ⋅ + =

 



 

Assuming the ' sν  and ' sδ to be sufficiently small, (2.4) can be approximated by the zero and first 

order terms of its Taylor expansion.  The linearized condition equations are thus 

(2.5) 
1 1

1,2, ,0,        
j

pn

ij j i io
j j

i mf f fαν
= =

= ⋅ ⋅ ⋅+ + =∑ ∑  

in which 

(2.6) io
ij o

j

ff
x
∂

=
∂

 

(2.7) 
j

io
i o

j

ff α α
∂

=
∂

 

(2.8) 1 2 1 2( , , , , , , , ) 0      o o o o o o
io i n pf f x x x α α α= ⋅⋅ ⋅ ⋅ ⋅ ⋅ =

.
 

Let iiσ  denote the variance of the observation o
ix .  Then the general problem of least squares as 

considered by Helmert and Deming is to determine the set of residuals and parameter corrections 

which minimizes the sum 

(2.9) 2

1

n
oo

i
i ii

S σ ν
σ=

 
= ⋅ 

 
∑

 

, 

while satisfying the condition equations (2.4) or equivalently (2.5).  The quantity oo iiσ σ  is the weight 

of the ith observation with ooσ  an arbitrary constant termed the unit variance or variance of unit weight.  

If the observational errors have the normal distribution, the residuals so obtained are the most probable  

values, and the least squares and maximum likelihood adjustments are equivalent.   

Suppose, however, that the errors have the general maltivariate normal distribution.  Temporarily 

considering the residuals as the actual errors, the distribution is 

(2.10) 
1
2

1 2

1 1
( , , , )

2n

T
h eν ν ν

σ
π

ν σ ν−− −
⋅ ⋅ ⋅ = ⋅  



 

where σ  is the covariance matrix of the observations, 1σ − the determinant of 1σ −  and ν  the vector 

(2.11) 1 2( , , , )T
nν ν νν = ⋅⋅ ⋅  

the superscript T  denoting transposition.  For this case the most probable set of residuals is clearly 

that which minimizes the quadratic form 

(2.12) 1TS −
=ν σ ν , 

or  a multiple thereof, while satisfying the specified condition equations.  The classical method of least 

squares corresponds to the special case for which σ  is diagonal, i.e., the observations are mutually 

independent and are normally distributed.  Henceforth we shall use the terminology 'method of least 

squares' in a broad sense to denote the maximum likelihood adjustment of observations having the 

general multivariate normal distribution. 

The set of linearized condition equations (2.5) can be expressed in matrix notation by 

(2.13) 
oX A oo

F F F Oν + + =∆
 

Where in addition to ν  defined above we have equations (2.14) below 

1 2

1 2

1 2

1 1 1 111 12 1 1

2 2 2 221 22 2 2

1 2

, , ,
o

A o

n

n

n

o

n o

n o

pm m mn mm m m

x

f f ff f f f
f f ff f f f

f f f ff f f

F F F

α α α

α α α

α α α

δ
δ

δ

∆

⋅ ⋅ ⋅ ⋅     
      ⋅ ⋅⋅ ⋅       
   ⋅ =  ⋅ ⋅ ⋅ ⋅  = =  ⋅ ⋅ ⋅ ⋅ ⋅
      ⋅⋅ ⋅ ⋅ ⋅ ⋅⋅ ⋅ ⋅ ⋅      

      ⋅ ⋅ ⋅ ⋅     

=

 

The problem to be considered is to determine, of all possible vectors ν  and ∆  which satisfy (2.13), 

those which result in the minimization of (2.12).  References [2] and [3] treat basically the case in which 

oxF is a square, diagonal matrix with σ  nondiagonal(correlated observations).  In [1], [4], and [8], 
oxF

is also square and diagonal, but the observations are uncorrelated(σ  diagonal).  In addition, 

references [4] and [8] also consider the case in which several observations appear in each of the 

condition equations but no parameters are involved(
oxF rectangular and filled and 

oAF  nonexistent). 



 

3. THE NORMAL EQUATIONS 
 

Problems in constrained minima are most conveniently solved by the method of Lagrange multipliers, 

also called the method of correlates.  Accordingly let 

(3.1) 1 2( , , , )T
mλ λ λΛ = ⋅⋅ ⋅  

be a vector of m  undetermined constant multipliers, one for each equation of constraint(condition 

equation).  We must then minimize the expression 

(3.2) 
1 2 )(

o o

T
x A o

TS F F F−= Λ + ∆ +−ν σ ν ν
 
. 

Differentiating this with respect to the free variables ν  and ∆  gives 

(3.3) 
12( ) 2

o o

T
x A

T TdS F d F dν σ ν−= Λ − Λ ∆−  

At the minimum of S  , dS  must equal zero for all possible variations of  dν  and d∆ .  This requires 

that 

(3.4) 
1 0

o

T
x

T Fν σ − Λ =− , 

(3.5) 0
o

T
AF ∆ = . 

Solving  (3.4) for ν  gives 

(3.6) 
o

T
xFν σ= Λ , 

and since ν  must satisfy (2.13), we have  

(3.7) ( ) 0
o o o

T
x x A oF F F Fσ Λ + ∆ + = . 

The vectors Λ  and ∆  can be obtained by solving (3.5) and (3.7) simultaneously, and then ν  can be 

determined from (3.6).  Combining (3.5) and (3.7) into the single matrix equation 



 

(3.8) 
0

0 00
o o o

o

T
x x A o

T
A

F F F F
F

σ  Λ     
⋅ + =       ∆       

 

 

gives the general system of normal equations for the adjustment. Except for the recognition that σ  is 

not necessarily diagonal, equations (3.6) and (3.8) are the matrix equivalents of the results obtained by 

Helmert and Deming. 

  



 

4. INVERSION OF NORMAL EQUATION COEFFICIENT MATRIX 
 

If any of the condition equations involve parameters alone, 
oxF will be of rank less than m  and 

consequently the xm m  matrix 
o o

T
x xF Fσ  will be singular.  To allow for this possibility in the solution of 

the normal equations we assume that the last s p<  of the m condition equations involve the 

parameters only.  
oxF will then have the form 

(4.1) 

11 12 1

21 22 2

1

,1 ,2 , 0
0 0 0

0 0 0

o

o

n

n

x
x

m s m s m s n

f f f
f f f

F
F

f f f− − −

⋅ ⋅ 
 ⋅ ⋅ 

⋅ ⋅ ⋅ ⋅ 
   ⋅ ⋅ ⋅ ⋅ = =  
 ⋅ ⋅    ⋅ ⋅ 
 ⋅ ⋅ ⋅ ⋅ ⋅
 

⋅ ⋅ 

, 

where the last s  rows are composed of zeros. The broken line indicates the partitioning employed. 

Partitioning the matrices ,  and 
oA oF FΛ   in a corresponding manner, we have 

(4.2) 

1 2

1 2

1 2

1 2

1 2

1 1 1

2 2 2

1

2
, , ,

1, 1, 1,

, , ,

p

p

o

o
p o

p

p

A

A
m s m s m s A

m s m s m s

m m m

f f f

f f f

F
F f f f F

f f f

f f f

α α α

α α α

α α α

α α α

α α α

− − −

− + − + − +

⋅ ⋅ 
 

⋅ ⋅ 
 ⋅ ⋅ ⋅ ⋅ 

  ⋅ ⋅ ⋅ ⋅
 = = ⋅ ⋅     

 ⋅ ⋅
 
 ⋅ ⋅ ⋅ ⋅ ⋅
 

⋅ ⋅  

, 



 

(4.3) 

1 1

2 2

1 1

2 2
( )

1 ( 1)

,      

o

o

o
o

om s m s o

m s m s o

m mo

f
f

F
F

Ff
f

f

λ
λ

λ
λ

λ

− −

− + − +

   
   
   

⋅ ⋅   
      Λ⋅ ⋅   Λ = = = =   Λ            
   
   ⋅ ⋅
   
   

 

From (4.1) it follows that 

(4.4) 

1 1 0

0 0
o o

o o

T
x xT

x x

F F
F F

σ
σ

 
=  
 

, 

and this substituted into the general normal equations along with (4.2) and (4.3) gives 

(4.5) 

1 1 1 1 1

2 2 2

1 2

0 0
0 0 0

0 00

o o o

o

o o

T
x x A o

A o

T T
A A

F F F F
F F

F F

σ     Λ  
       ⋅ Λ + =       
             ∆

,  

or in a more convenient arrangement 

 

(4.6) 

1 1 1 1 1

1 2

2 22

0 0
0 0 0

00 0

o o o

o o

o

T
x x A o

T T
A A

oA

F F F F
F F

FF

σ     Λ  
       ⋅ ∆ + =       
     Λ       

,   

This arrangement of the normal equations is generally suitable for elimination solutions.  If such a 

solution should break down at any point, i.e., division by zero occurs, it is merely necessary to delete 

the row and column where the difficulty occurs and remove them to the end of the matrix, taking care to 

remove the corresponding unknown also. Such a breakdown would happen, for instance, if 1 1

o o

T
x xF Fσ  



 

were singular, or for that matter, if any square submatrix containing an entire left hand section of the 

diagonal were singular. 

In order to derive a useful general expression for the inverse of the coefficient matrix in (4;6), it is 

necessary that certain matrices to be defined presently be nonsingular. Since this can always be 

achieved by proper formulation or manipulation of the condition equations prior to the adjustment, the 

ensuing development may be considered general. 

Denoting the coefficient matrix in (4.6) by N , it is a straightforward matter to show by the method of 

submatrices that 

(4.7) 

1 1

1 1

1 1 1

T T T T

T

G H QH H Q H K L
N QH Q K L

L KH L K L

− −

− −

− − −

 − −
 = − 
 −   

 

in which 

 

(4.8) 
1
oxD F σ=  

(4.9) 
1
o

T
xG DF=  

(4.10) 
1 1
o

T
AH F G−=  

(4.11) 
1
oAJ HF=  

(4.12) 
2 1
oAK F J −=  

(4.13) 
2
o

T
AL KF=  

(4.14) 1 1TQ J K L K− −= −  

 



 

From (4.6) and (4.7) the roots of the normal equations are  

 

(4.15) 1 1 1 1 2( ) ( )T T T
o oG H QH F H K L F− −Λ = − − +  

(4.16) 1 1 2( ) ( )T
o oQH F K L F−∆ = − −  

(4.17) 2 1 1 1 2( ) ( )o oL KH F L F− −Λ = −  

 

Unless appropriate measures are taken beforehand, it is possible for G or J to be singular, since the 

ranks of the factors 1
oxF and 1

oAF can be less respectively than the orders of G and J .  On the other 

hand, it is not necessary to assume that L is nonsingular, for this is assured by the independence of 

the condition equations. 

Some relations among the auxiliary matrices (4.9)-(4.14) are 

(4.18) 
THGH J=  

(4.19) 
TKJK L=  

(4.20) QJQ Q=  

 

Note that since for the general case 1Q J −≠ , equation (4.20) implies that Q  is singular.  It will be 

shown later that Q  is the covariance matrix of the parameters.  Hence for the general case considered 

in which the parameters are not necessarily independent, it is to be expected that Q  is singular and of 

rank p s− . 

  



 

5. COVARIANCE MATRICES RELATED TO THE ADJUSTMENT 

Let Y and Z be arbitrary vectors of variates with 

(5.1) 1 2( , , , )T
kY y y y= ⋅⋅ ⋅  

(5.2) 1 2( , , , )T
lZ z z z= ⋅⋅ ⋅  

Then clearly 

(5.3) 

1 1 1 2 1

2 1 2 2 2

1 2

l

l
T

k k k l

YZ

y z y z y z
y z y z y z

y z y z y z

⋅ ⋅ 
 ⋅ ⋅ 

= ⋅ ⋅ ⋅ ⋅ 
 ⋅ ⋅ ⋅ ⋅ 
 ⋅ ⋅ 

 

and we define 

(5.4) 

1 1 1 2 1

2 1 2 2 2

1 2

l

l

T

k k k l

y z y z y z

y z y z y z

YZ

y z y z y z

σ σ σ

σ σ σ
σ

σ σ σ

⋅ ⋅ 
 ⋅ ⋅ 
 = ⋅ ⋅ ⋅ ⋅
 

⋅ ⋅ ⋅ ⋅ 
 ⋅ ⋅ 

 

as the covariance matrix of the vectors ,Y Z .  It readily follows that  

(5.5) ( )T T
T

YZ Z Y
σ σ=  

If Y Z=  we shall simply refer to (5.4) as the covariance matrix of Y . 

 

Now let 

(5.6) 1 2  1, 2, ,( , , , ),     o o o o
i i n i qu u x x x = ⋅ ⋅ ⋅= ⋅ ⋅ ⋅  



 

be arbitrary functions of the observations o
ix  .  Differentiation gives  

(5.7) 
1

n
o o o
i ij j

j
du u dx

=

= ∑  

where o
iju  is the partial derivative of o

iu  with respect to o
jx .  Regarding o

idu  as 

the error in o
iu  resulting from errors o

jdx  in the observations, the covariance of o
gdu , o

hdu ; and hence 

that of o
gu , o

hu  is 

(5.8) 
1 1

o o
g g

n n
o o
gi ij hju u

i j
u uσ σ

= =

=∑∑  

where ijσ  denotes the covariance of ,o o
i jx x .  Letting 

(5.9) 

1
1 1 2 1

2 1 2 2
2

1 2

( , , , )
( , , , )

, ,

( , , , )

o
o o o o

n
o o o o

on

o o
o

o o o o
q n n

o
n

x
u x x x x
u x x x x x

u x
x

u x x x x

x

∂ 
 ∂
  ⋅ ⋅ ⋅  
∂    ⋅ ⋅ ⋅      ∂∂     = = =⋅ ⋅
⋅∂     ⋅ ⋅      ⋅    ⋅ ⋅ ⋅    ∂ 

 ∂ 

 

we can express (5.7) as 

(5.10) 
o

T
T

o o o x o
o

du u dx u dx
x

 ∂
= = ∂ 

 

 

 



 

 

and it follows readily from (5.8) that 

(5.11) 
0
T To o o oo o o

T T
x x x xu u x x

u u u uσ σ σ= =  

is the covariance matrix of ou .  By means of this result the covariance matrix of any vector of functions 

of the observations can be determined. 

 

Of particular interest is the covariance matrix of the unknowns in the normal equations.  Letting 

(5.12) ( )1 2T T T T
oW = Λ ∆ Λ  

(5.13) ( )1 20T T T
o o oC F F=  

the solution of the normal equations can be written 

(5.14) 1
o oW N C−= −  

Since N  is essentially unaffected by the observational errors and hence may be considered constant, 

we have from (5.14) 

(5.15) 1
o odW N dC−= −  

with 

(5.16) 
1 20

T T
T T T

o o o o o o
o o o

dC C dX F F dx
x x x

   ∂ ∂ ∂
= =   ∂ ∂ ∂   

 

But by definition 

(5.17) 
1 1

o

T T
o x

o

F F
x
∂

=
∂

 

 



 

and since 2
oF  involves parameters only, 

(5.18) 
2 0T

o
o

F
x
∂

=
∂

 . 

Hence in (5.16)  

(5.19) ( )1 0 0
o

TT
o x odC F dx=  . 

From (4.7), (5.15) and (5.19) it follows that 

(5.20) 

1

1

1
o o

T

o x o X o

G H QH
dW QH F dx W dx

L KH

−

−

 −
 = − = 
 − 

 , 

Applying (5.10) and (5.11) yields 

 

(5.21) 

1 1

1 1

1 1
T o oo o

TT T

T
x xW W

G H QH G H QH
QH F F QH
L KH L KH

σ σ

− −

− −

   − −
   =    
   − −   

, 

which reduces to 

(5.22) 

1 1 1 1 2

1 2

2 1 2 2 2

1 1

1 1

0
0 0

0

T T T

T T T T
o o

T T T

T T T

W W

G H QH H K L
Q

L KH L

σ σ σ
σ σ σ σ

σ σ σ

− −
Λ Λ Λ ∆ Λ Λ

∆Λ ∆∆ ∆Λ
− −

Λ Λ Λ ∆ Λ Λ

  − −
  = =   
  −   

. 

 

Comparing this result with (4.7) shows that the covariance matrix of the unknowns can be obtained 

directly from the inverse of the normal equation coefficient matrix.  Notice also that the covariance 

matrices of the vectors 1 ,Λ ∆  and 2 ,Λ ∆  are zero.  Since by (3.6) ν  is a function of Λ  alone, it follows 

that the residuals and parameter corrections, are mutually independent. 



 

To derive the covariance matrix of the residuals we use (3.6), (4.1), (4.3), (4.8) and (4.15) to write 

(5.23) 
1 1 1 1 1 1 2(( ) ( ) )
o

T T T T
x o oF D D G H QH F L KH Fν σ − −= Λ = Λ = − − − . 

Hence by (5.17) and (5.18) 

(5.24) 
1 1( )

o

T T
o o x od D G H QH F dx dxν ν−= − − = , 

which leads to 

(5.25) 1 1
1( )T To o

T T T T
x x D G H QH D D D

νν
σ ν σν σ−

Λ Λ
= = − = . 

From this and (5.24) we see that 

(5.26) To o o o

T T
x x x x νν

ν σ σν ν σν σ= = − = − . 

 

We shall next determine the covariance matrix of the adjusted observations.  This matrix is of primary 

importance, since comparing it with the covariance matrix of the original observations enables one to 

gage the improvement effected by the adjustment. By (2.2) we may write 

(5.27) ox x ν= +  

where x  denotes the vector of adjusted Observations.  Differentiation gives (5.28) 

(5.28) ( )
ox odx I dxν= +  

 and using (5.26) the covariance matrix of x  turns out to be 

(5.29) T Txx νν
σ σ σ= −  

This shows that the covariance matrix of the adjusted observations is equal to the covariance matrix of 

the original observations minus that of the residuals. 

Once the adjustment is completed it is often required that functions of the adjusted observations, or 

more generally of the adjusted observations and parameters, be evaluated and that their variances be 

determined.  The latter can be achieved through a reinterpretation of (5.6) - (5.11). 



 

Let 

(5.30) 1 2 1 2 1, 2, ,( , , , , , , , ),      i i n p i tu u x x x α α α = ⋅ ⋅ ⋅= ⋅ ⋅ ⋅ ⋅ ⋅ ⋅  

be arbitrary functions of the adjusted observations and parameters and let u  be the vector if the iu .  

Then the obvious notation 

(5.31) ( )X A X A

dX
dU U dX U dA U U

dA
 

= + =  
 

 

and since by (2.3)  dA d= ∆  we have 

(5.32) ( ) ( )T T

T
X A X AUU X X

U U U Uσ σ
   
   ∆ ∆   

=  

The covariance matrix of the vector ( )T T TX ∆  is readily found to be— 

(5.33) 
T TT

T
T T

T
XX XVV

X X
X

Q HTQ
QHD Q

σ σσ σ
σ

σ σ
∆

   
    ∆ ∆∆∆ ∆   

  − −
= =   −   

 

and this result along with (5.32) may be used to determine the covariance matrix of any vector of 

functions of the adjusted observations and parameters. 

  



 

6. DIRECT ADJUSTMENT OF FUNCTIONS OF OBSERVATIONS 
 

In section 2 it was assumed that the o
ix  were the original observations.  We now relax this requirement 

by considering the o
ix  as independent functions of (perhaps) more elemental observations ˆo

ix  which 

have a known multinormal distribution. Accordingly we write 

(6.1) 1 2  1, 2, ,  ,   ˆ ˆ ˆ( , , , ),     o o o o
i i k i n n kx x x xφ = ⋅ ⋅ ⋅ ≤= ⋅ ⋅ ⋅  

Differentiating this gives 

(6.2) 
1

ˆ
n

o o
i ij j

j
dx dxφ

=

=∑  

in which ˆo
idx  may be regarded as the error in the derived observation o

ix  resulting from errors ˆo
jdx  in 

the elemental observations ˆo
ix  .  Writing (6.2) in terms of residuals rather than differentials gives 

(6.3) 
1

ˆ
n

i ij j
j

v vφ
=

=∑   ,  

or in matrix notation 

(6.4) ˆV V= Φ  . 

 

As in the original case we assume that the adjusted, derived observations must satisfy the condition 

equations (2.1). However since the distribution of the derived observations is not now known, we must 

use the distribution of the elemental observations to obtain the adjustment.  From (2.13) and (6.4) it fol-

lows that the linearized condition equations in terms of the elemental residuals ˆiv  are 

(6.5) ˆ 0
o ox A oF V F FΦ + ∆ + =  

and the most probable elemental residuals are obtained by minimizing, subject to the constraint (6.5), 



 

(6.6) 
1ˆ ˆˆTS V Vσ −=  

in which σ̂  is the covariance matrix of the elemental observations. 

Following the procedure of section 3 with regard to (6.5) and (6.6) we arrive at the following results. The 

most probable elemental residuals are 

(6.7) ˆ ˆ
o

T T
xV Fσ= Φ  

and Λ  and ∆  are obtained from the normal equations 

(6.8) 
ˆ 0

0 00
o o o

o

T T
x x A o

T
A

F F F F
F

σ Φ Φ Λ     
⋅ + =       ∆       

 

From (6.4) and (6.7) the derived residuals are 

(6.9) ˆ
o

T T
xV Fσ= Φ Φ Λ  

and since the covariance matrix of the derived observations is  

(6.10) ˆ Tσ σ= Φ Φ  

equations (6.8) and (6.9) can be written 

(6.11) 
0

0 00
o o o

o

T
x x A o

T
A

F F F F
F

σ  Λ     
⋅ + =       ∆       

 

(6.12) 
o

T
xFν σ= Λ  

But these results are identical respectively with (3.6) and (3.8) which were obtained by minimizing 
1TV Vσ −  subject to the same condition equations.  Hence it is possible to adjust derived observations 

directly and without modification by the procedures developed earlier.  From this we might infer that the 

derived observations also have a multinormal density with covariance matrix given by (6.10). A direct 

proof of this is given in the next section. 



 

If the derived residuals are obtained from (6.11) and (6.12), the problem remains of determining the 

elemental residuals. This can be accomplished by multiplying (6.9) by 1ˆ ˆ( )T Tσ σ −Φ Φ Φ  which 

gives, according to (6.7), 

(6.13) 
1ˆ ˆ ˆ( )T TV Vσ σ −= Φ Φ Φ  

The interesting feature of this result is that it is the same thing as the least squares adjustment of the 

elemental observations subject to condition equations given by (6.4) in which the vector of derived 

residuals is assumed to be known.  Hence once the derived residuals have been obtained, the 

elemental residuals can be determined from a new least squares adjustment in which the condition 

equations are the relations between the elemental and derived observations. 

The results of this section free us of the sometimes cumbersome restriction of having to adjust the 

elemental observations directly.  Moreover, by judicious formulation of a given problem and choice of 

derived observations efficient solutions can often be developed.  Sometimes, for instance, it is possible 

to calculate a single covariance matrix for the derived observations, which can be used for a series of 

different, successive adjustments.  In other cases efficient approximation solutions can be developed.  

For example, if the diagonal terms of σ  strongly predominate, it may be possible to ignore the 

nondiagonal terms completely without altering the final results significantly.  An application of this 

principle in the field of photogrammetric triangulation is given by Brown [15]. 

  



 

7. JOINT DISTRIBUTION OF INDEPENDENT LINEAR COMBINATIONS OF 

VAREATES FROM A MULTINORMAL DENSITY 

For present purposes we shall consider V̂  and V as vectors of the actual errors in the elemental and 

derived observations respectively.  By hypothesis the distribution of the elemental errors is 

(7.1) 

1
2

1 2

1 1
( , , , )

2n

T
V V V

V V
h e

σ
π

σ−− −
⋅ ⋅ ⋅ = ⋅  

We shall show that the joint, marginal distribution of the derived errors, ˆV V= Φ , is a multinormal 

density with covariance matrix given by (6.10). Equation (6.4) may be rewritten as 

(7.2) 1 1 2 2
ˆ ˆV V V= Φ +Φ  

in which 1Φ  is the square matrix defined by the partition 

(7.3) ( )

1,1 1,2 1, 1, 1 1,

2,1 2,2 2, 2, 1 2,

1 2

,2 ,2 , , 1 ,

n n k

n n k

n n n n n n n k

φ φ φ φ φ
φ φ φ φ φ

φ φ φ φ φ

+

+

+

⋅ ⋅ ⋅ 
 ⋅ ⋅ ⋅ 
⋅ ⋅ ⋅ ⋅ ⋅ ⋅ Φ = Φ Φ =

 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 
 ⋅ ⋅ ⋅ 

 

and 

(7.4) ( ) ( )1 2 1 2 1
ˆ ˆ ˆ ˆ ˆ ˆ ˆ

T TT T T
n n kV V V ν ν ν ν ν+= = ⋅ ⋅ ⋅  

Since the 's ν  are independent, we may assume that the variates have been so ordered that 1Φ  is 

nonsingular. Solving (7.2) for 1̂V  in terms of the n  derived errors and remaining n k−  elemental 

errors gives 

(7.5) ( )1
1 1 2 2
ˆ ˆV V V−= Φ −Φ  

and according to (7.4) this allows us to write 



 

(7.6) 
( )1 1 1

1 2 21 1 1 2

22 2

ˆˆ
ˆ

ˆˆ 0ˆ

V V VV
V

I VV V

− − − Φ −Φ    Φ −Φ Φ
 = = =    
         

 

Letting 

(7.7) 
1 2

T

nV V V V
 ∂ ∂ ∂ ∂

= ⋅ ⋅ ∂ ∂ ∂ ∂ 
 

the Jacobian of the transformation (7.5) is 

(7.8) 
1

1 1
ˆTV

V
−∂

= Φ
∂

 

and the joint distribution of the 's ν  and the last n k−  's ν  is thus 

(7.9) 

( )

1 2 1 1 2 1

2 1 1
1

1 1
2 2 2

ˆ ˆ ˆ ˆ ˆ

1ˆ ˆ

ˆ, , , , , , , , ,

1
2

ˆ

( ) ( )

ˆ

T
n n k k

k
T

V V V V V V V V

V V

V
V

g h

e
π

σ
σ

+

− − − −

∂
⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅

∂

Φ

=

 =  
 

 

which according to (7.6) may be written 

(7.10) ( )2 1 1
1

1
2 2

1 1
2 2 2

ˆ ˆ( ) ( )1
2

ˆ
k

T T T T TV V V V
g e

π
σ− −

−− Ω
Φ =  

 
 

This is a multinormal density in which 

(7.11) 

2 2
ˆ ˆ

11 1 1 1
11 121 1 1 1 2 1 1 2

21 22

ˆ ˆ
ˆ ˆ0 0

TV V

V V

T

I I
σ σ

σ
σ σ

−− − − −
− −

  
    

   Φ −Φ Φ Φ −Φ Φ 
Ω = =     

    
 

is the inverse of the covariance matrix of the vector 2̂( )T T TV V .  The middle matrix in (7.11) is merely

1σ̂ −  partitioned to be conformable with the submatrices of its factors. 



 

The marginal distribution of the 's ν  in (7.10) can be obtained by integrating out the 's ν .  As is well 

known ( Mood [16] ) this will lead to a new multinormal distribution the covariance matrix of which can 

be obtained by striking out the last n k−  rows and columns of Ω . To obtain Ω  from 1−Ω  we 

observe that 

(7.12) 

1 1
1 21 1 2

00 II

− − Φ Φ Φ −Φ Φ  
=   
  

 

and invert (7.11) applying the reversal rule. The reduced result is 

(7.13) 1 11 1 2 21 1 1 12 2 2 22 2 1 12 2 22

21 1 22 2 22

ˆ ˆ ˆ ˆ ˆ ˆ
ˆ ˆ ˆ

T T T T

T T

σ σ σ σ σ σ
σ σ σ

 Φ Φ +Φ Φ +Φ Φ +Φ Φ Φ +Φ
Ω =  Φ + Φ 

 

which by the partitioning of Ω  and σ̂  can be written more compactly as 

(7.14) 2

2 22

ˆ ˆ
ˆ ˆ

T

T T

σ σ
σ σ

 Φ Φ Φ
Ω =  Φ 

 

where 2σ̂  is defined by 

(7.15) 
12

2
22

ˆ
ˆ

ˆ
σ

σ
σ
 

=  
 

 

Hence by (7.14) the covariance matrix of the 's ν  in the marginal distribution is  

(7.16) ˆ Tσ σ= Φ Φ  

which agrees with (6.10).  The marginal distribution of the derived errors is thus 

(7.17) ( ) ( )2

1 2

1
1 2

1
2

1
, , ,

1( )
2

k

n

T

V V V
V V

h e
π

σσ − − −
⋅ ⋅ ⋅ =  

which is the result we set out to establish. Since the covariance matrix of the set of variates is unique, 

this result could have been established directly from (6.10) and the fact stated above that a marginal 

distribution from a multinormal distribution is also a multinormal distribution. 



 

8. EVALUATION OF THE QUADRATIC FORM OF THE RESIDUALS 

 

While S  can always be computed directly from the definition (2.12) , this is not always convenient, 

especially if σ  is nondiagonal and difficult to invert or if the vector of residuals is not otherwise 

required.  It is possible to derive alternate expressions for S  which involve neither V  nor σ  and 

which are essentially byproducts of the solution of the normal equations.  Thus, starting with the 

definition (2.12)  and employing (5.23) and (4.9) yields 

(8.1) 
1 1 1 1 1 1 1 1( ) ( )

o o

T T T T
x xS V V F F Gσ σ σ σ− −= = Λ Λ = Λ Λ  

A simpler form results from this if we successively employ the relations 

(8.2) 
1 1 1 1 1 2 2 2 2( ),     ,     

o o o o

T T
o A A A A oG F F F F F FΛ = − + ∆ Λ = −Λ ∆ = −  

which follow directly from the set of normal equations (4.6).  The reduced result is 

(8.3) 1 1 2 2T T T
o o oS F F F= −Λ − Λ = −Λ  

which corresponds to the expression given by Deming [14] (equation 17, p. 57) for the general 

uncorrelated case.  This result provides a convenient starting point for the derivation of still other 

expressions for S  which may be useful in special cases.  For the general problem, however, it is 

doubtful whether a simpler or more convenient formula than (8.3) exists. 

When the original condition equations have been linearized by Taylor's series, a sequence of iterations 

of the solution may be necessary to remove the influence of neglected higher order terms.  In this case 

the final value of the vector V  is the sum of the initial V  and those obtained from successive iterations. 

The same is true of the vectors ,   and oFΛ ∆ .  Equation (8.3) is not strictly valid when Λ and oF
result from iterations.  It should, however, provide an accurate approximation in most cases.   An exact 

expression for S  when N  iterations have been performed may be derived from the second equality of 

(8.1).   Let 1( )T
iΛ and 1( )

ox iF  be the values of 1TΛ and 1
oxF corresponding to the thi  iteration with the 

values for the initial solution corresponding to 0i = .  Then 

(8.4) 
TS B Bσ=  



 

where B  is the vector 

(8.5) 
1 1

0

( ) ( )
o

N
T T

i x i
i

B F
−

= Λ∑  

The principal merit of this result is that it does not require the inversion of σ .  If this is not a serious 

problem, it may be preferable to employ the first equality of (8.1), using the final vector of resid 

  



 

9. TESTS OF SIGNIFICANCE FOR THE ADJUSTMENT 
 

Deming (1935) [13] has shown that the quadratic form of the residuals obtained from the least squares 

adjustment of uncorrelated, normally distributed Observations has a 2χ  distribution with or n n= −  

degrees of freedom (see first paragraph of section 2 of this report).  By means of a transformation of 

the residuals it can be shown that this result holds for the correlated case as well.  This fact may be 

used to provide a test of significance for the adjustment.  Essentially, the test determines whether the 

estimate of unit variance obtained from the adjustment is compatible with the pre-established value. We 

set 

(9.1) 2 Sχ =  

and determine the probability 2 2 r degrees of freedom(  ;  )iP χ χ≥  from a table of the 2χ  distribution. 

If this probability is unreasonably small (or large, though this would rarely occur in practice), a poor 

adjustment is indicated and an effort should be made to determine and, if possible, correct the cause. 

Among the principal reasons for an unsatisfactory 2χ  result are: 

(a) Computational errors: Though mention of this possibility may seem trivial, it is felt that the 

correctness of the computations should be established before seeking other explanations. This is 

especially true if the adjustment is routine and has been consistently successful before, or if 
2 2( )

i
P χ χ≥  turns out to be so extreme that the other possibilities to be mentioned seem 

unlikely. 

(b) Uncorrected systematic errors in the observations: An investigation into all phases of the 

measuring operation-is necessary to evaluate this possibility. Special instrumental calibrations 

provide the means for correcting such 'errors'.  It should be pointed out that a satisfactory 2χ  

result does not, in itself, preclude the existence of systematic errors, especially if they are 

constant or nearly so. 

(c) Inadequate or incorrect condition equations: The condition equations represent a 

mathematical model of a physical situation and as such are satisfactory only if they actually 

approximate the true situation to a degree compatible with the accuracy of the measurements. In 

many cases, as measuring accuracy increases, more complex models become necessary in 

order to account for previously insignificant factors.  If a model is inadequate, it may well show up 



 

in the 2χ  test.  However, since inadequate models can result from systematic errors, the 

remarks of (b) hold here also. 

An adequate set of condition equations may lead to an inadequate set of linearized condition 

equations due to the influence of neglected higher order terms. The residuals or parameter 

corrections may be so large that ordinary iterations actually cause the solution to diverge or to 

converge to an incorrect result. When such difficulties result from poor approximation parameters 

alone, the method of 'damped least squares' developed by Levenberg (1944) [17] may be useful 

(this is discussed somewhat in the next section), while if the residuals also are too large, a 

gradient method of minimization described by Curry (1944) [18] may lead to a satisfactory 

solution. 

Aside from inadequate condition equations, which may be regarded as poor approximations, 

incorrect equations, which do not approximate the physical situation at all, may be included 

among the set of condition equations. Incorrect condition equations result from outright mistakes 

or from faulty analysis and can be expected to affect the 2χ result adversely. 

In complex measuring situations the most difficult problem may not lie in the actual adjustment, 

for this can be done straightforwardly by the methods of this paper, nor in obtaining correct 

condition equations, but rather in the determination of the degrees of freedom of a set of 

observations and hence of the number of condition equations.  We may speak of an incomplete 

or overcomplete set of condition equations according to whether less or more than the correct 

number are chosen. Assuming the individual condition equations to be correct, an overcomplete 

set will lead to a singular set of normal equations.  An incomplete set, on the other hand, may 

yield a solution and may or may not result in a poor 2χ  test, depending upon the importance of 

the omitted condition equations. 

(d) Inaccurate covariance matrix of the observations: In order to make the 2χ  test it is necessary 

to assume that σ  is accurately known. Actually, in practice, an estimate of σ , generally derived 

from replicated observations, is used.  In order to have confidence in such an estimate the 

degrees of freedom upon which the estimates of the elements of σ  are based should be 

reasonably large, say greater than 20.  In many problems, the elements of the covariance matrix 

of the observations may be known precisely to a constant multiple, ooσ , the variance of unit 

weight: that is oo oσσ σ= ; where oσ  is known precisely.  In this case only ooσ  need be 



 

estimated, and an alternate test of significance described below may be used to compare the 

least squares estimate of unit variance with a given prior estimate. 

 

From the least squares adjustment under consideration we may obtain an 

estimate ( )oo i
σ  of ooσ  (note that if ooσ  is unknown; 1 1

oo
T T

oS V V V Vσσ σ− −= = ) 

(9.2) 
2

( ) i oo
oo i

S
r r

χ σσ = =  

Hence 

(9.3) 
( )2

ooi i

i oor
σχ
σ

=  

in which, for the sake of uniformity, we have used ir  rather than r  to denote the degrees of freedom. 

Now let ( )oo o
σ be an estimate of ooσ  obtained from a least squares adjustment independent of that 

from which ( )oo i
σ  was obtained. (Note that the usual, straightforward method of computing the 

variance of a set of repeated observations from the sum of squares of deviations from the mean is 

essentially an estimate based upon a least squares adjustment.)  Letting the degrees of freedom 

associated with such an independent estimate be or , we may write 

(9.4) 
( )2

ooo o

o oor
σχ
σ

=  

We then form the ratio for the F distribution 

(9.5) 
( )
( )

2

2

i
ooi i

o
o oo o

o

rF

r

χ
σ

χ σ
= =  



 

The value  ; r , r  degrees of freedom(   )o i oF FP >  provides a test of the compatibility of the two 

estimates of unit variance and should be used in place of the 2χ  test when the unit variance is not 

accurately known beforehand.  When or is large the 2χ and F tests lead to similar results. 

When it is not possible to obtain an independent estimate of ooσ , the above tests cannot be applied.  

In such cases the adjustment is employed to obtain the estimate given by (9.2).  Indeed, this may even 

be the primary purpose for the adjustment.  It must be kept in mind, however, that for such an estimate 

to be valid it must be known that such factors as have been mentioned above do not influence the 

result significantly. 

Mistakes can often be localized and the nature of systematic errors and model deformities revealed, 

through a study of the individual residuals and parameters. 

Although the 2χ  and F tests described are applicable to the great majority of problems involving 

physical measurements, more general methods are required when the conditions underlying their 

application are not fulfilled.  In this regard we shall merely mention that such methods are provided by 

tests based upon the Wishart and related distributions.  A derivation of the Wishart distribution together 

with a study of its properties and applications is given by Wilks (1943) [19]. 

  



 

 

10. GENERAL REMARKS 
 

Consideration of the general least squares adjustment and related problems in terms of matrix algebra 

provides a broad, uncluttered concept of the procedures and operations necessary in the reduction.  

Since all problems in least squares are merely special cases of the general problem, there is no need 

for the classification of problems into distinct categories.  It is probably this compartmenting of least 

squares which so long delayed the solution of the general curve fitting problem and has otherwise 

retarded the application and interpretation of the method. 

 

In some problems the distinction between observations and parameters is not clear cut.  A parameter 

may have a physical interpretation and be capable of direct measurement.  In such cases an 

approximation value of the parameter is sometimes obtained from a direct measurement. But if such a 

quantity is actually measured and has a probability distribution, it should, strictly speaking, be treated 

as an observation.  In practice, however, a measured quantity is often regarded as a parameter, rather 

than an observation, when it has a very large variance compared with that which would result from 

calculating the quantity from the other observations.  It might thus be conjectured that in a least squares 

adjustment a parameter may be regarded as an observation with infinitely large variance.  It turns out 

that this consideration leads to the same results as the original development, providing it be postulated 

that an observation of infinite variance contributes nothing to the degrees of freedom of a set of 

observations.(Since variates must have finite variances in order to have the multinormal distribution, 

this discussion should be considered only in a heuristic sense).  This concept allows the formulation of 

approximation procedures in which observations with relatively large variances are treated as 

parameters.  Conversely, treating parameters as observations with relatively large variances can lead 

to useful results.  Levenberg (1944) [17], for example, used this concept implicitly in deriving the 

method of 'damped least squares,' which is useful when the usual least squares solution fails to 

converge due to poor approximation parameters.  In essence, Levenberg showed that by treating the 

parameters as observations with appropriate variances (a method for calculating optimum variances 

was given) the solution can be made to converge to the correct result. Normally, with each iteration the 

variances of the parameter residuals increase until ultimately they no longer influence the solution. 

Although Levenberg derived damped least squares only for the special case in which a single, 



 

independent observation appears in each condition equation (σ diagonal; 
oxF  square, diagonal), the 

method can readily be extended to hold for the general case.  Incidentally, this provides an illustration 

of the fact that many results which have been proven for a specific area of least squares actually hold 

(perhaps with slight modification) for the general case as well. 

 

The least squares adjustment is capable of the following geometrical interpretation.  Consider an n-

dimensional coordinate system with orthogonal axes 1 2, , , nν ν ν⋅⋅ ⋅ .  Then the quadratic form 

1TS −
=ν σ ν , being positive definite, will represent an n-dimensional ellipsoid (a detailed study of the n-

dimensional ellipsoid is given by Wilks (1943) [19]). The ellipsoid is centered at the origin.  If σ  is 

diagonal, the axes of the ellipsoid will coincide with the coordinate axes, while for σ  nondiagonal the 

ellipsoid will be in a tilted orientation.  It is clear that by a rotational coordinate transformation, a tilted 

ellipsoid can be reoriented into a standard position.  Such a transformation is specified by ˆRν ν= ⋅  

where R  is an xn n  matrix whose rows (or columns) are composed of the normalized characteristic 

vectors of σ .  Thus a problem involving correlated observations can be reduced to one involving 

derived observations which are uncorrelated.  The dimensions of the hyperellipsoid are, of course, 

unaffected by a rotation.  In fact, the lengths of the axes are directly proportional to the square roots of 

the characteristic roots of σ .  The constant of proportionality which determines their absolute 

dimensions is simply 1/2S .  It thus follows that the volume of the ellipsoid is directly proportional to /2nS  

(the complete expression for the volume is given by Burington and May (l953)[20]).  Therefore, 

minimizing S  is equivalent to minimizing the volume of the ellipsoid, it being understood, naturally, that 

the condition equation constraints must be satisfied by some point on the ellipsoid. To simplify matters 

we may assume that any parameters have been eliminated from the linearized condition equations, 

leaving r  relations between the residuals alone. Each condition equation then represents a 

hyperplane, and the residuals must lie on the intersection of the r  hyperplanes. Now consider the 

family of hyperellipsoids defined by varying S  The orientation and relative dimensions of such 

ellipsoids will be constant, and all will be centered at the origin. We may think of the family as being 

formed by the balloonlike expansion of an initial infinitesimal ellipsoid.  Let the ellipsoid expand until it 

becomes tangent to the intersection of the condition equation hyperplanes. For this point all the 

condition equations are satisfied and the volume of the ellipsoid (and consequently S  ) is obviously 

minimum.  Hence the coordinates of the point of tangency give the most probable residuals.  Thus, 

from a geometrical point of view the only difference between the adjustment of correlated and 



 

uncorrelated observations lies in the orientation of the hyperellipsoid relative to the coordinate axes. To 

go somewhat further with the interpretation we may suppose that the ellipsoid has been rotated into a 

standard position.  Then the ellipsoid can be transformed to a hypersphere by a simple stretch 

transformation. The most probable-set of residuals is then given by the coordinates of the point on the 

intersection of condition equation hyperplanes which is closest to the origin. The distance of this point 

from the origin represents the sum of the squares of the residuals.  This interpretation is especially 

convenient for problems in conventional least squares, since the ellipsoids are in standard position to 

begin with and the necessary stretch is readily accomplished by scaling the observations. 

 

 

            

             Duane C. Brown 

  



 

REFERENCES 
 

 

[1]  P. S. Dwyer, "A matrix presentation of least squares and correlation theory with matrix justification 

of improved methods of solution," Annals of Math. Stat., vol. 15 (1944), pp. 82-89. 

[2]  A. C. Aitken, "On least squares and linear combinations of observations," Proc. Roy. Soc. 

Edinburgh, Vol. 55 (1935), pp. 42-48. 

[3]  E. R. Cohen, "The basis of the criterion of least squares," Rev. Mod. Physics, Vol. 25 (1953), pp. 

709-713. 

[4]  E. Gotthardt, "Ableitung der Grundformeln der Ausgleichungsrechnung mit Hilfe der 

Matrizenrechnung," Deutche Geodatische Kommission, Reihe A: Hohere Geodasie 

Veroffentlichung Nr 4, Bamberg (1952). 

[5]  M. Merriman, "A TEXTBOOK ON THE METHOD OF LEAST SQUARES," J. Wiley and Sons 

(1884). 

[6]  L. D. Weld, "THEORY OF ERRORS AND LEAST SQUARES," Macmillan (1916). 

[7]  0. M. Leland, "PRACTICAL LEAST SQUARES," McGraw-Hill (1921). 

[8]  N. Arley and K. R. Duch, "INTRODUCTION TO THE THEORY OF PROBABILITY AND 

STATISTICS," Wiley (1950), ch. 12. 

[9]  F. Helmert, "Die Ausgleichungsrechnung nach der Methode der kleinsten Quadrate," Leipzig 

(1872), pp. 215-222 (second edition (1907), pp. 285-293). 

[10]  Jordan-Eggert, "Handbuch der Vermessungskunde," Vol. 1, Stuttgart (1939), PP. 184-185. 

[11]  W. E. Deming, "On the application of least squares," Phil. Mag., Vol. 11 (1931), pp. 346-158. 

[12]  W. E. Doming, "On the application of least squares -- II," Phil. Mag., Vol. 17 (1934), pp. 804-829. 

[13]  W. E. Deming, "On the application of least squares -- III. A new property of least squares," Phil. 

Mag., Vol. 19 (1935), pp. 389-402. 

[14]  W. E. Deming, "STATISTICAL ANALYSIS OF DATA,":Wiley (1943). 



 

[15]  D. C. Brown, "Adjustment and triangulation of fixed camera observations," Ballistic Research 

Laboratories Report No. 960 (1955). 

[16] A. M. Mood, "INTRODUCTION TO THE THEORY OF STATISTICS," McGraw-Hill (1950), p. 181. 

[17]  K. Levenberg, "A method for the solution of certain non-linear problems in least squares," Quart. 

Appl. Math., Vol. 2 (1944), PP. 164-168. 

[18]  H. B. Curry, "The method of steepest descent for non-linear minimization problems," Quart. Appl. 

Math., Vol. 2 (1944), pp. 258-261. 

[19]  S. S. Wilks, "MATHEMATICAL STATISTICS," Princeton University Press (1944), ch. XI. 

[20]  B. S. Burington and D. C. May, "HANDBOOK OF PROBABILITY AND STATISTICS WITH 

TABLES," Handbook Publishers, Inc. (1953), pp. 245-246. 

  



 

 

SUPPLEMENTARY REMARKS 
 

 

After the present report had been readied for publication, the author encountered the two additional 

matrix treatments of least squares which follow: 

[21]  C. R. Rao, "ADVANCED STATISTICAL METHODS IN BICMETRIC RESEARCH," Wiley (1952), 

ch. 2,3. 

[22]  O. Kempthorne, "THE DESIGN AND ANALYSIS OF EXPERIMENTS," Wiley (1952), PP. 54-66. 

Both of these references consider the special case for which 
oxF  is equal to the unit matrix and σ  is 

merely a multiple of the unit matrix.  Rao extends his results to include the case for which some of the 

condition equations involve parameters only.  However, his 1
oxF  submatrix for this more general case is 

again the unit matrix, 

 

G. H. Weiss of BRL has pointed out that the principal result of Section 7 is to be found in the reference 

[23]  A H. Cramer, "MATHEMATICAL METHODS OF STATISTICS," Princeton Univ. Press (1946), pp. 

312-313. 

Cramer obtains the result quite simply by showing that the characteristic function of the transformation 

is that of a multinormal distribution with covariance matrix of the form (7.16). 

 

It has been suggested that a reference on inversion by the method of sub-matrices would be 

appropriate in connection with the derivation of equation (4.7). This is provided by 

[24] Frazer, Duncan, Collar, "ELEMENTARY MATRICES," Cambridge Univ. Press (1950), pp. 112-113. 

 



 

Also in regard to (4.7) it seems worthwhile to mention that the derivation is considerably simplified if the 

relations (4.18) - (4.20) are employed.  This is also true for the reductions leading to equations (5.22), 

(5.25) and (5.33). 
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